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Upper bounds to atomic electron densities in position and
momentum spaces
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Modified functions r−αρ(r) and p−β�(p) of the spherically averaged electron densities
ρ(r) in position space and �(p) in momentum space are found to be convex (i.e., the second
derivatives are nonnegative everywhere) for all the 103 ground-state atoms from hydrogen
(atomic number Z = 1) to lawrencium (Z = 103), if the parameters are chosen to be α � 0.6
and β � 1.4. The convex property of r−αρ(r) and p−β�(p) is used to derive upper bounds
to the density functions ρ(r) and �(p) in terms of their radial moments 〈rs 〉 and 〈ps 〉 or
frequency moments 〈ρt 〉 and 〈�t 〉. In most cases, the present bounds are shown to be more
general and more accurate than those reported in the literature.

KEY WORDS: electron position and momentum densities, local bounds, convex densities,
analytic inequalities

1. Introduction

With the progress of density functional methods [1–3], the electron densities ρ(r)
in position space and �(p) in momentum space play a more significant role in modern
quantum theory of atoms and molecules. Accordingly, our knowledge on the general
properties of electron density functions ρ(r) and �(p) becomes more important.

For atomic systems the information of the three-dimensional position density ρ(r)
may be condensed into its spherical average ρ(r) defined by

ρ(r) ≡ (4π)−1
∫

d�rρ(r), (1a)

where (r,�r) with �r ≡ (θr, φr ) are the spherical coordinates of the three-dimensional
vector r. For the spherically averaged density ρ(r) of atoms, some structural proper-
ties are known either theoretically or numerically. In addition to its nonnegativity, the
behaviors of ρ(r) near [4,5] and far [6] from the nucleus were rigorously proved. It is
known numerically that ρ(r) is a monotonically decreasing function for all the neutral
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atoms with atomic number Z � 103 [7–9] and for all the singly-charged ions with the
number of electrons N � 54 [10] in their experimental ground states. For some neutrals
and ions, ρ(r) has been found [11–13] to be convex, i.e., the second derivative ρ ′′(r) of
the density ρ(r) is nonnegative for any r. The monotonicity of a function r−αρ(r) with
α � 0 has been also studied [14,15] for some neutral atoms.

The spherical average �(p) of the momentum density �(p) is defined by

�(p) ≡ (4π)−1
∫

d�p�(p), (1b)

where p = (p,�p) with �p ≡ (θp, φp). The density �(p) is nonnegative, and its
asymptotic behavior for large momentum is known [16] rigorously. There are several
numerical studies on the monotonicity of �(p) for atoms (see [17] for a review), and the
co-existence of monotonic and nonmonotonic momentum densities for atoms and atomic
ions in their ground states has been established recently [17,18] within the Hartree–Fock
framework. The monotonicity and convexity of a function p−β�(p) with β � 0 has
also been examined [19] for neutral atoms with Z � 54.

In the present paper, we report new upper bounds with improved accuracy for the
electron densities ρ(r) and �(p) of atoms in terms of the radial moments

〈
rs
〉 ≡ 4π

∫ ∞
0

dr rs+2ρ(r),
〈
ps
〉 ≡ 4π

∫ ∞
0

dp ps+2�(p), (2)

and the frequency moments,

µt ≡ 4π
∫ ∞

0
dr r2[ρ(r)]t , νt ≡ 4π

∫ ∞
0

dp p2[�(p)
]t
, (3)

in both position and momentum spaces, based on the convexity of the auxiliary func-
tions r−αρ(r) and p−β�(p). In the literature [20–23], several bounds of this type are
known. However, the literature bounds [20–22] are restrictive in the sense that one or
two particular moments such as 〈r−2〉, 〈r0〉, 〈r2〉, and 〈p2〉 are involved. On the other
hand, the present bounds are general, and any of the radial and frequency moments can
be employed to bound the electron densities ρ(r) and �(p) from the above. Our bounds
will be also shown to be more applicable and more accurate than those given in [23]. In
the next section, we present our theoretical results in a general form, starting from an
integral inequality derived by Volkov [24]. In section 3, we first discuss the convexity of
the functions r−αρ(r) and p−β�(p). The present upper bounds are then applied to the
ground-state neutral atoms with 1 � Z � 103 and the accuracy of the new bounds is
compared with that given in the literature. Hartree atomic units are used throughout.
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2. Rigorous bounds to electron densities

For a nonnegative, decreasing function f (x) defined over (0,∞), Volkov [24] de-
rived an inequality

rn−1
∫ ∞
r

dx f (x) �
(
n− 1

n

)n−1 ∫ ∞
0

dx xn−1f (x), n > 1, r > 0, (4)

where the two integrals are assumed to exist.
For atomic systems, it is known [14,15,19] that the functions r−αρ(r) and

p−β�(p) are convex, whenever the values of the parameters α (� 0) and β (� 0)
be appropriately chosen. In order to derive new bounds to the electron density functions
in terms of their radial and frequency moments, we fully use the fact that if g′′(x) � 0
and g′(x) is integrable over (0,∞), then a function −g′(x) or −([g(x)]t )′ with t > 1
is nonnegative and decreasing, where the prime (′) means a differentiation with respect
to x and g(x) is either x−αρ(x) or x−β�(x).

We first consider a function f (x) = −[x−αρ(x)]′ with a nonnegative α such that
x−αρ(x) is convex. Since ∫ ∞

0
dx xn−1f (x) = n− 1

4π

〈
rn−α−4

〉
(5)

for 0 � α < n − 1, we obtain from equation (4) a general bound to the density ρ(r) in
terms of the radial moments 〈rs〉,

ρ(r) � (s + α − 1)s+α

(s + α)s+α−1

〈rs−4〉
4πrs−1

, (6)

for s > 1. Some particular cases of equation (6) are

s = 2: ρ(r) � (α + 1)α+2

(α + 2)α+1

〈r−2〉
4πr

, (7a)

s = 3: ρ(r) � (α + 2)α+3

(α + 3)α+2

〈r−1〉
4πr2

, (7b)

s = 4: ρ(r) � (α + 3)α+4

(α + 4)α+3

N

4πr3
, (7c)

where we have used 〈r0〉 = N , the number of electrons.
We next consider another nonnegative and decreasing function

f (x) = −([x−αρ(x)]t)′,
where t > 1 and α is nonnegative. Using equation (4) again with n = αt + 4 and∫ ∞

0
dx xαt+3f (x) = αt + 3

4π
µt, (8)
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we obtain another general bound to the density ρ(r),

ρ(r) �
(
αt + 3

αt + 4

)(αt+3)/t[
(αt + 3)µt

4πr3

]1/t

, (9)

in terms of the frequency moment µt , where α � 0, t > 1. A special case of equation (9)
for t = 2 reads

ρ(r) �
(

2α + 3

2α + 4

)(2t+3)/2[
(2α + 3)〈ρ〉

4πr3

]1/2

, (10)

where µ2 = 〈ρ〉 is the average electron density in position space.
An exactly analogous procedure with the functions f (x) = −[x−β�(x)]′ and

f (x) = −([x−β�(x)]t )′ allows us to obtain from equation (4) the corresponding bounds
to the electron density �(p) in momentum space,

�(p) � (s + β − 1)s+β

(s + β)s+β−1

〈ps−4〉
4πps−1

, (11)

with the condition 1 < s < 9, and

�(p) �
(
βt + 3

βt + 4

)(βt+3)/t[
(βt + 3)νt

4πp3

]1/t

, (12)

with the conditions β � 0 and t > 1. The condition s < 9 for equation (11) originates
from the p−8 decay of �(p) for large p [16].

We note that a function xx+1/(x + 1)x is an increasing function on x. Therefore,
the bounds (6) and (11) are better for smaller values of α and β; the best bounds are
found when α = 0 and β = 0, which means that the electron densities ρ(r) and �(p)

are convex.

3. Numerical results and discussion

A function x−αf (x) is convex for any value of α which satisfies α � α0, where α0

is given by [14]

α0 = max
0�x<∞

[
q0(x)

]
, (13a)

in which

q0(x) =



1

2f (x)

{
2xf ′(x)− f (x)+ λ

1/2
0

}
, if λ0 � 0,

0, if λ0 < 0,
(13b)

and λ0 = [2xf ′(x)− f (x)]2 − 4x2f (x)f ′′(x).
Previously [14,15], the value of α0, which makes the position-space density func-

tion r−αρ(r) with α � α0 convex, was examined for the atoms with Z � 92 based
on different sets of Roothaan–Hartree–Fock wave functions [25–29]. Moreover, the
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function r−αρ(r) in atomic systems was proved [14] to be convex everywhere if
α � [(1 + 4Z2/I )1/2 − 1]/2, where I is the first ionization potential of an atom. In
momentum space, the value of β0 which makes the density function p−β�(p) with
β � β0 convex was reported [19] for the atoms with Z � 54, using more accurate wave
functions [30].

However, the wave functions due to Clementi and Roetti [25] and McLean and
McLean [26], used in previous studies [14,15], are now known [27–29] to suffer from
nontrivial errors and inaccuracies. Therefore, we have re-evaluated the values of α0 and
β0 for all the atoms with Z � 103 using the accurate wave functions constructed very
recently by Koga et al. [30,31]. The α0 values for the atoms with 93 � Z � 103 and the
β0 values for the atoms with 55 � Z � 103 are determined here for the first time.

The present results for α0 are shown in figure 1(a). For the atoms with Z � 92,
the present values are found to be little different from those reported previously [14,15].

Figure 1. Convexity parameters α0 and β0 as a function of Z. (a) Values of the parameter α0 such that
r−αρ(r) is convex for α � α0. (b) Values of the parameter β0 such that p−β�(p) is convex for β � β0.

All values in atomic units.
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For the 103 atoms, the α0 values distribute between 0 and 0.6. In particular, the 23
atoms with Z = 1, 2, 7–15 and 33–44 have α0 = 0, which implies that these atoms
have a convex position density ρ(r). In position space, we can conclude that the density
function r−0.6ρ(r), and r−1ρ(r) for simplicity, is always convex for all the atoms with
Z � 103 in their ground state. The β0 values for the momentum density are plotted in
figure 1(b). The value ranges from 0.1 to 1.4, and an atom with a convex �(p) does not
exist among the 103 atoms. Instead, we can say that a momentum-space density function
p−1.4�(p), and p−2�(p) simply, is convex for all the 103 atoms.

The position-space density r−αρ(r) with α = 1 is convex for any of the 103
ground-state atoms. Then, equations (6) and (9) with α = 1 give upper bounds

ρ(r) � ss+1

(s + 1)s
〈rs−4〉
4πrs−1

, s > 1 (14)

and

ρ(r) �
(
t + 3

t + 4

)(t+3)/t[
(t + 3)µt

4πr3

]1/t

, t > 1 (15)

to the electron density ρ(r), respectively. Three particular cases resulting from equa-
tion (14) with s = 3, with s = 6, and equation (15) with t = 2, i.e.,

ρ(r)� ρ1(r) ≡ 34

43

〈r−1〉
4πr2

, (16a)

ρ(r)� ρ2(r) ≡ 67

76

〈r2〉
4πr2

, (16b)

ρ(r)� ρ3(r) ≡
(

5

6

)5/2[ 5〈ρ〉
4πr3

]1/2

, (16c)

are of our special interest, because 〈r−1〉 in equation (16a) specifies the electron–nucleus
attraction energy, 〈r2〉 in equation (16b) is proportional to the Langevin–Pauli diamag-
netic susceptibility [32], and 〈ρ〉 in equation (16c) is the average electron density.

Gálvez and Porras [23] reported an upper bound for a decreasing ρ(r),

ρ(r) � (s − 1)
〈rs−4〉
4πrs−1

, s > 1. (17)

If we compare the coefficients, ss+1/(s + 1)s and (s − 1), on the right-hand sides of
equations (14) and (17), we find that the former is always smaller than the latter; the
ratio varies from 8/9 for s = 2 to 1/e for s = ∞. Thus, the present upper bound,
equation (14), is more tight and accurate than that of [23], equation (17). Hoffmann-
Ostenhof and Hoffmann-Ostenhof [20] gave a bound

ρ(r) �
√

2NT

4π

1

r2
, (18)
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corresponding to equation (16a), where N is the number of electrons and T = 〈p2〉/2
is the electronic kinetic energy. When the coefficient

√
2NT /(4π) in equation (18)

and 34〈r−1〉/(44π) in equation (16a) have been numerically examined with the accurate
Hartree–Fock wave functions [30,31], we have found that equation (16a) always has
a smaller coefficient for all the atoms with 4 � Z � 103. King [21] reported upper
bounds

ρ(r)� T

2π

1

r
, (19a)

ρ(r)� T
√
(2− δ)δ

2π

1

r
, (19b)

where δ = 〈r−2〉/(4T ) (if δ < 1). Numerical examinations have shown that our bound,
equation (14) with s = 2, i.e.,

ρ(r) � 23

32

〈r−2〉
4πr

, (20)

is better than equation (19a) for the atoms with Z � 39. However, equation (19b) is
better than equation (20) for all the atoms, partly because equation (19b) employs the
information of two moments 〈r−2〉 and 〈p2〉.

In figure 2(a), the three typical upper bounds, equations (16a)–(16c), from the
present study are explicitly exemplified and compared with the Hartree–Fock position
density ρ(r) for the Cs atom (Z = 55). This atom has been chosen since it approx-
imately occupies the center of the 103 atoms examined in this work and yet includes
the density contributions both from the tight and loose atomic orbitals; the 1s orbital
energy is −1272.769 hartrees, while the 6s orbital energy is −0.124 hartrees. We see in
figure 2(a) that the relative accuracies of the bounds depend on the r value. The bound
ρ3(r) is best for r < 0.6 bohrs, whereas ρ2(r) is best for r > 0.6 bohrs among the three
bounds. However, neither bound is still with enough accuracy for very small and large
values of r, and these regions await improved bounds.

In momentum space, the density function p−β�(p) with β = 2 is convex for any
of the 103 ground-state atoms. For β = 2, the inequalities (11) and (12) are now:

�(p)� (s + 1)s+2

(s + 2)s+1

〈ps−4〉
4πps−1

, 1 < s < 9, (21)

�(p)�
(

2t + 3

2t + 4

)(2t+3)/t[
(2t + 3)νt

4πp3

]1/t

, t > 1. (22)

The particular cases of equation (21) with s = 3, with s = 6, and equation (17) with
t = 2, i.e.,

�(p)��1(p) ≡ 45

54

〈p−1〉
4πp2

, (23a)
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Figure 2. Illustration of the present upper bounds for the Cs atom (Z = 55). (a) Position density. (b) Mo-
mentum density. All values in atomic units.

�(p)��2(p) ≡ 78

87

〈p2〉
4πp5

, (23b)

�(p)��3(p) ≡
(

7

8

)7/2(7〈�〉
4πp3

)1/2

, (23c)
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are interesting, because they include physically important quantities; 〈p−1〉 in equa-
tion (23a) is twice the peak height of the isotropic Compton profile in photon–electron
interactions [16,33], 〈p2〉 in equation (23b) is twice the nonrelativistic electronic kinetic
energy, and 〈�〉 in equation (23c) is the average momentum density.

A set of upper bounds analogous to equation (21) was derived by Gálvez and Por-
ras [23] for a decreasing �(p):

�(p) � (s − 1)
〈ps−4〉
4πps−1

, 1 < s < 9. (24)

Comparison of the coefficients (s+1)s+2/(s+2)s+1 in equation (21) and (s−1) in equa-
tion (24) immediately clarifies that equation (21) is more tight bound than equation (24)
except for the case of s = 2. We note that equation (24) is applicable only when an atom
has a monotonically decreasing momentum density, but equation (21) as well as equa-
tions (22) and (23) can be used for all the atoms. In fact, it is known [17] that 37 atoms
among the 103 atoms with 1 � Z � 103 do not have monotonically decreasing �(p).
Yue and Janmin [22] gave a different upper bound:

�(p) � 〈r
2〉

4πp
. (25)

Setting s = 2 in equation (21), the corresponding bound from this study is

�(p) � 34

43

〈p−2〉
4πp

. (26)

Numerical examination of 〈r2〉 and 〈p−2〉 with the Hartree–Fock wave functions [30,31]
has shown that the present bound (26) is better than equation (25) for the 67 atoms with
Z = 7–10, 14–18, 24, 29, 31–36, 41–55, 57, 64, and 71–103 among the 103 ground-
state atoms.

In figure 2(b), we plot the present three upper bounds, equations (23a)–(23c), to
the momentum density �(p) for the Cs atom. As was the bounds to the position density
ρ(r), we observe in figure 2(b) that each bound to �(p) has different accuracy depend-
ing on the value of p: �3(p) is best for p < 2.4, �1(p) is best for 2.4 < p < 10.2,
and �2(p) is best for p > 10.2 among the three bounds. This aspect is more or less the
same for all the atoms examined.

4. Summary

The present study has improved and extended our knowledge on the convex prop-
erty of modified density functions r−αρ(r) and p−β�(p) for all the 103 ground-state
atoms with 1 � Z � 103 in both position and momentum spaces. In particular, it
has been found that the functions r−1ρ(r) and p−2�(p) are always convex for all the
103 ground-state atomic systems. The convexity of these functions has enabled us to
derive new upper bounds to the electron density functions ρ(r) in position space and
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�(p) in momentum space in terms of their radial moments 〈rs〉 and 〈ps〉 or frequency
moments 〈ρt〉 and 〈�t〉. The results correlate local and global properties of the elec-
tron densities of atomic systems, which would not be easy to obtain otherwise. Since
the present mathematical techniques are general, it may be interesting to apply them to
other density functions such as the Compton profile and the form factor which are also
important from both experimental and theoretical points of view.
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